Penerapan Metode Apriori Untuk Identifikasi Pola Data Transaksi Pada Customer Di Supermarket
Feri Sulianta -Supermarket merupakan tempat berbelanja dari seseorang terhadap suatu daerah masyarakat setempat. Dengan pelayanan yang maksimal untuk mengetahui pola data pembelian yang diberikan dan mengantisipasi persediaan bahan pokok didaerah tertentu agar tidak mengalami keterlambatan kesediaan barangt. Maka diperlukan pencarian pola atau hubungan Association rule (aturan asosiatif).
Association rule merupakan salah satu teknik data mining yang sangat penting, dapat diartikan bahwa hubungan antara sejumlah item dengan menentukan nilai support dan confidence pada basis data, penting tidaknya aturan asosiasi dapat diketahui dengan nilai support atau nilai penunjang dan confidence (nilai kepastian) algoritma apriori menghitung seringnnya item-set yang muncul dalam database melalui beberapa iterasi, setiap iterasi tersebut memiliki dua tahapan yaitu menentukan kandidat dan menghitung kandidat. Tahap pertama pada iterasi pertama , himpunan yang dihasilkan dari kandidat item-set berisikan seluruh 1-item-set. Tahap kedua algoritma apriori menghitung support-nya melalui seluruh item-set dengan batas minimum tertentu saja yang dianggap sering muncul (frequent), sehingga dapat diketahui item-set yang sering muncul. Penghapusan ini berdasarkan pengamatan yaitu apakah item-set tersebut sering muncul atau tidak. Dari hasil penelitian dengan menggunakan nilai minimum support dan minimum confident tertinggi akan membentuk nilai akhir, yaitu nilai paling besar yang melebihi batas minimal support dan confidence.
Dalam penelitian ini dengan menggunakan kombinasi 2
item set dengan minimum support 2 dan minimum confidence 35 pada super market
di daerah tebet selatan adalah “jika pembeli membeli Telur dan daging giling maka
pembeli akan membeli air mineral ” dengan Support 7,333% dan confidence 50,66%
Kata Kunci : super market, association rule, algoritma apriori
Tampilan maksimal klik disini
0 comments:
Posting Komentar